UPPER EXTREMITIES

For the Treatment of CMC Joint Osteoarthritis

THE DIFFERENCE IS STRENGTH.

For OUS Distribution Only

THE DIFFERENCE IS **STRENGTH**.

The Cartiva® implant does not shorten the metacarpal bone, thereby maintaining the normal anatomy, which contributes to improved key pinch, tip pinch, and grip strength.

Improvements as reported in the literature for trapeziectomy with or without LRTI for key pinch, tip pinch, and grip strength range from 12.5% to 15%, 17.2% to 18.5%, and 27% to 35%, respectively.²

A unique biomedical polymer that mimics natural cartilage and aids in smooth joint articulation and mobility.³

THE DIFFERENCE IS STRENGTH.

THE DIFFERENCE IS DATA.™

Unlike LRTI and Trapeziectomy, Cartiva® maintains the normal anatomy by sparing the trapezium and preserving joint height.

in pain using the Visual Analog Scale (VAS) was observed for Cartiva patients at 12 months. 80% of Cartiva implant patients demonstrated a clinically meaningful reduction in pain from baseline at 12 months.^{1,4}

CARTIVA® INSTRUMENTATION

Cartiva is implanted using dedicated instrumentation designed to provide the surgeon with an implant that is well-seated through a press-fit implantation.

HYDROGEL THAT WORKS LIKE NATURAL CARTILAGE

Mechanical and physical properties similar to native cartilage.

PROPERTY	ARTICULAR CARTILAGE ^{7,8}	CARTIVA®
Water Content	60-80%	60%
Compressive Modulus	0.3 – 0.8 MPa	2.5-3.2 MPa
Coefficient of Friction	<0.01 - 0.05	0.04 - 0.07

FEATURES	BENEFITS
Synthetic	No risk of viral or bacterial transmission associated with human or animal derived materials
Biocompatible	Composed of saline and an organic polymer
Durable	Mechanical and physical properties similar to native cartilage capable of withstanding repetitive loading typical of MTP joint
Slippery	Low coefficient of friction aids joint articulation and mobility

BURNS NO BRIDGES

CARTIVA VS. LRTI

Cartiva SCI does not "burn a bridge" to excellent pain relief and successful functional outcomes, if a revision procedure is needed. 6

EXTENSIVELY TESTED

TEST	METHOD/MODEL	RESULT		
Cytotoxicity	L929 MEM Elution	Non-cytotoxic		
Cytotoxicity	Direct Contact	Non-cytotoxic		
Sensitization	Kligman Maximization	Non-sensitizer		
rritation/Intracutaneous	IC Injection	Negligible irritant		
Acute Systemic Toxicity	Systemic Injection	Negative		
Subchronic Toxicity	Femoral Condyle Implantation	Non-toxic		
Chronic Toxicity	Femoral Condyle Implantation	Non-toxic		
Genotoxicity	Ames Reverse Mutation	Non-mutagenic		
Genotoxicity	Chromosomal Aberration Assay			
Genotoxicity	Rodent Bone Marrow Micronucleus			
mplantation	Bone Implantation In Femoral Condyle Rabbit Pyrogen Test	Negative/no reaction		
		Non-pyrogenic		
		NL		
Cytotoxicity	L929 MEM Elution	Non-cytotoxic		
Sensitization	Kligman Maximization	Non-sensitizer		
rritation/Intracutaneous	IC Injection	Negligible irritant		
ANIMAL SAFETY STUD	ES			
Animal Study	Cartiva device implanted in load bearing region of medial femoral condyle in	- No evidence of local or	systemic toxicity	
1 Year Goat	stifle of 8 mature goats; control defects in 4 goats	 No inflammatory reaction Non-significant change t 	around implant or osteolytic	c bone loss
	At one year, knees evaluated via	- No difference in presence	e of subarticular cysts with	n control
	- High field strength MR imaging system for morphology and quantitative	- No device fragmentation	n or dislodgement	
	T2 and T1-rho parameters; - Histological processing	- No particulate migration	-	
	- Biomechanical testing			
		.		
Particulate Implant Study 6 month rabbit	 5 million cycle wear debris quantified and characterized Particulate replicated and injected via bolus in a quantity 9x 	 No complications on injuin No test-article related action 		
	- Test injections and control (saline) administered to 16 animals.	- No significant findings or	i clinical observation, gross	patholoay.
	At 3 and 6 months, histology and pathology per ISO standards	histomorphometry, or his	opathology of localized tis	ssue
		- Systemic issues showed	no microscopic changes re	elated to the treatment
		- No wear debris or foreig	gn body giant cells with inj	lected material
FUNCTIONAL TESTING				
Fatigue Testing	Cycles 100,000	Mechanical durability demonstrated after 100,000 continuous cycles at peak load of 54 MPa Significant mass and height recovery upon unloading The Cartiva device demonstrated adequate strength to survive the repetitive compressive loads that occur clinically		
0 0	Test Surface Stainless Steel			
	Axial Load 54 MPa			
			,	
Wear Testing		- Resistance to wear demonstrated after 5M continuous cycles at		
	Cycles 5 million			ous cycles at
	Test Surface Cartilage	simulated peak load of 4	1 MPa	,
		simulated peak load of 4 - Average total mass of de	1 MPa ebris collected per device o	,
	Test Surface Cartilage	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris	4 MPa ebris collected per device of mass of the test articles. over 5 years of 2.88 mg or	over 5 million cycles 0.31% of initial device i
	Test Surface Cartilage	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of .	4 MPa ebris collected per device of mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside	over 5 million cycles 0.31% of initial device i
	Test Surface Cartilage	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris	4 MPa ebris collected per device of mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside	over 5 million cycles 0.31% of initial device r
Torsion	Te'st Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1 mm,	simulated peak load of 4 - Average total mass of dr was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UHMVVPE (80 mm3/ye All specimens at all three	4 MPa sbris collected per device of mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside arl ⁹ compression levels of 1 mr	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm dia
Torsion	Te'st Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1 mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of - UHMWVPE (80 mm3/yee All specimens at all three not exhibit any rotation w	4 MPa sbris collected per device of mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mr thin the test fixture or any of	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm dia damage due to the app
Torsion	Te'st Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1 mm,	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UHMWVPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic	4 MPa sbris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mm thin the test fixture or any a n ensures no wear at the a	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm di damage due to the appl device-bone socket intert
Torsion	Te'st Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1 mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UHMWVPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic	4 MPa sbris collected per device of mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mr thin the test fixture or any of	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm di damage due to the appl device-bone socket intert
Torsion S-N Analysis	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UH/WVPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure	4 MPa sbris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mir thin the test fixture or any a n ensures no wear at the a sening or implant dislodge	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm dia damage due to the appl device-bone socket interf
	Te'st Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1 mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UH/WVVPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure - Continuous 5/M compres	4 MPa sbris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside arl ^o compression levels of 1 m thin the test fixture or any a nensures no wear at the a sening or implant dislodge sion cycles	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm di damage due to the appl device-bone socket intert
	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of - UHWWPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no load - No catastrophic failure - Continuous 5M compres - Extreme loads of 24 MP	4 MPa exbris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mr thin the test fixture or any a in ensures no wear at the a sening or implant dislodge sion cycles a (6 x peak load)	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm dia damage due to the appl device-bone socket interf
S-N Analysis	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UH/WVVPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure - Continuous 5/M compres	4 MPa exbris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mr thin the test fixture or any a in ensures no wear at the a sening or implant dislodge sion cycles a (6 x peak load)	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm dia damage due to the appl device-bone socket interf
S-N Analysis MATERIALS PROPERTIE:	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1 mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of - UHWWPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no load - No catastrophic failure - Continuous 5M compres - Extreme loads of 24 MP	4 MPa sbris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mr thin the test fixture or any of ne ensures no wear at the a sening or implant dislodge sion cycles a (6 x peak load) esses, no failures	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm dia damage due to the appl device-bone socket interf ement.
S-N Analysis MATERIALS PROPERTIE:	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles Devices loading of unconfined devices to achieve 10%, 20%, 30% and 40% strain to	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of - UHWWPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no load - No catastrophic failure - Continuous 5M compres - Extreme loads of 24 MP	4 MPa exbris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mr thin the test fixture or any a in ensures no wear at the a sening or implant dislodge sion cycles a (6 x peak load)	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm dia damage due to the appl device-bone socket interf ement.
S-N Analysis MATERIALS PROPERTIE:	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles Devices loaded in a confined devices to achieve 10%, 20%, 30% and 40% strain to measure deformation resistance of the matrix and determine compatibility of	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UHMWVPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure - Continuous 5M compres - Extreme loads of 24 MP - Even under significant st	4 MPa abris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art) ⁹ compression levels of 1 mm thin the test fixture or any a n ensures no wear at the a sening or implant dislodge sion cycles a (6 x peak load) esses, no failures CARTIVA	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm dia damage due to the app device-bone socket interf ment. Articular Cartilag
S-N Analysis MATERIALS PROPERTIE:	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles Devices loading of unconfined devices to achieve 10%, 20%, 30% and 40% strain to	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UH/WVVPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure - Continuous 5/M compres - Extreme loads of 24 MP - Even under significant str - Even under significant str - Compressive Modulus	4 MPa sbris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mr thin the test fixture or any of ne ensures no wear at the a sening or implant dislodge sion cycles a (6 x peak load) esses, no failures	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm dia damage due to the appl device-bone socket interf ement.
S-N Analysis MATERIALS PROPERTIE:	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles Devices loaded in a confined devices to achieve 10%, 20%, 30% and 40% strain to measure deformation resistance of the matrix and determine compatibility of	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UHMWVPE (80 mm3/ye All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure - Continuous 5M compres - Extreme loads of 24 MP - Even under significant st - Compressive Modulus Equilibrium Elastic	4 MPa abris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art) ⁹ compression levels of 1 mm thin the test fixture or any a n ensures no wear at the a sening or implant dislodge sion cycles a (6 x peak load) esses, no failures CARTIVA	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm dia damage due to the appl device-bone socket interf ment. Articular Cartilag
S-N Analysis MATERIALS PROPERTIE: Unconfined Compression	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1 mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles Loading of unconfined devices to achieve 10%, 20%, 30% and 40% strain to measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UHMWVPE (80 mm3/ye All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure - Continuous 5M compres - Extreme loads of 24 MP - Even under significant str - Compressive Modulus Equilibrium Elastic Compressive Modulus	4 MPa abris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mm thin the test fixture or any a n ensures no wear at the a sening or implant dislodge sion cycles a (6 x peak load) esses, no failures CARTIVA 3.05±0.12 MPa 2.68–3.34 MPa	Articular Cartilage Articular Cartilage Articular Cartilage Articular Cartilage .31–.80 ¹⁰ MPa 0.54 ¹¹ MPa
	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles Loading of unconfined devices to achieve 10%, 20%, 30% and 40% strain to measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25%	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UH/WWPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure - Continuous 5M compres - Extreme loads of 24 MP - Even under significant st - Even under significant st - Compressive Modulus Equilibrium Elastic Compressive Modulus Higher polymer content a	4 MPa sbris collected per device of mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art] ^o compression levels of 1 mm thin the test fixture or any of n ensures no wear at the of sening or implant dislodge sion cycles a (6 x peak load) esses, no failures CARTIVA 3.05±0.12 MPa 2.68–3.34 MPa nd presence of physical critical	Articular Cartilag Articular Cartilag .31–.80 ¹⁰ MPa .54 ¹¹ MPa .55 ¹¹ MPa .55 ¹¹ MPa
S-N Analysis MATERIALS PROPERTIE: Unconfined Compression	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1 mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles Loading of unconfined devices to achieve 10%, 20%, 30% and 40% strain to measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UH/WVPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure - Continuous 5M compres - Extreme loads of 24 MP - Even under significant str - Compressive Modulus Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mod	4 MPa sbris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mr tihin the test fixture or any of sening or implant dislodge sion cycles a (6 × peak load) esses, no failures CARTIVA 3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa wh	Articular Cartilag Articular Cartilag .31-80 ¹⁰ MPa .3180 ¹⁰ MPa .3180 ¹⁰ MPa .3180 ¹⁰ MPa .3180 ¹⁰ MPa .3180 ¹⁰ MPa .3180 ¹⁰ MPa
S-N Analysis MATERIALS PROPERTIE: Unconfined Compression	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles Loading of unconfined devices to achieve 10%, 20%, 30% and 40% strain to measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25%	simulated peak load of 4 - Average total mass of de was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UH/WWPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure - Continuous 5M compres - Extreme loads of 24 MP - Even under significant st - Even under significant st - Compressive Modulus Equilibrium Elastic Compressive Modulus Higher polymer content a	4 MPa sbris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mr tihin the test fixture or any of sening or implant dislodge sion cycles a (6 × peak load) esses, no failures CARTIVA 3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa wh	Articular Cartilag Articular Cartilag .31–.80 ¹⁰ MPa .54 ¹¹ MPa .55 ¹¹ MPa .55 ¹¹ MPa
S-N Analysis MATERIALS PROPERTIE: Unconfined Compression	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles Devices loaded in a confined devices to achieve 10%, 20%, 30% and 40% strain to measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased) Devices seated proud and loaded at 45 degrees to apply axial compression	simulated peak load of 4 - Average total mass of dr was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UH/MVVPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure - Continuous 5M compres - Extreme loads of 24 MP - Even under significant sh - Compressive Modulus Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mod between 0,6 and 1.2 MI All test articles reached 3	4 MPa sbris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mr thin the test fixture or any of sening or implant dislodge sion cycles a (6 × peak load) esses, no failures CARTIVA 3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa wh Pa.	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm diadanage due to the appleducebone socket interferent. Articular Cartilag .31–.80 ¹⁰ MPa 0.54 ¹¹ MPa oss links in Cartiva resultere cartilage values rangemut
S-N Analysis MATERIALS PROPERTIES Unconfined Compression Confined Compression	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles Loading of unconfined devices to achieve 10%, 20%, 30% and 40% strain to measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased)	simulated peak load of 4 - Average total mass of dr was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UH/MVVPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure - Continuous 5M compres - Extreme loads of 24 MP - Even under significant sh - Compressive Modulus Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mod between 0,6 and 1.2 MI All test articles reached 3	4 MPa sbris collected per device of mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art] ^o compression levels of 1 mm thin the test fixture or any of n ensures no wear at the of sening or implant dislodge sion cycles a (6 x peak load) esses, no failures CARTIVA 3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa wha Pa.	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm dia damage due to the appl device-bone socket interf erment. Articular Cartilag .31–.80 ¹⁰ MPa 0.54 ¹¹ MPa coss links in Cartiva result ere cartilage values rangent ut dislocations or tearing
S-N Analysis MATERIALS PROPERTIES Unconfined Compression Confined Compression	Test Surface Cartilage Simulated Axial Load 4 MPa Devices seated in foam bone analog inferior fixture, compressed at 1mm, 2mm, or 3mm of displacement, and then rotated to apply 10 degrees of torsion to simulate worst-case torsion conditions Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to 5,000,000 cycles and 12, 35, and 54 MPa to 100,000 cycles Devices loaded in a confined devices to achieve 10%, 20%, 30% and 40% strain to measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased) Devices seated proud and loaded at 45 degrees to apply axial compression	simulated peak load of 4 - Average total mass of dr was 0.31% of the initial - Worse case wear debris - Volumetric wear rate of . UH/MVVPE (80 mm3/yee All specimens at all three not exhibit any rotation w torsion. The lack of rotatic and, consequently, no loc - No catastrophic failure - Continuous 5M compres - Extreme loads of 24 MP - Even under significant sh - Compressive Modulus Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mod between 0,6 and 1.2 MI All test articles reached 3	4 MPa sbris collected per device a mass of the test articles. over 5 years of 2.88 mg or 53 mm3/yr that is conside art ⁹ compression levels of 1 mr thin the test fixture or any of sening or implant dislodge sion cycles a (6 × peak load) esses, no failures CARTIVA 3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa wh Pa.	over 5 million cycles 0.31% of initial device r erably lower than m, 2 mm, and 3 mm dia damage due to the appl device-bone socket interf erment. Articular Cartilag .31–.80 ¹⁰ MPa 0.54 ¹¹ MPa coss links in Cartiva result ere cartilage values rangent ut dislocations or tearing

CARTIVA® PRODUCTS FOR CMC

IMPLANTS				
CMC-08 8 mm Cartiva CMC Implant		For Customer Service Call: 877-336-4616		
REUSABLE INSTRUMENTATION				
DRILL BITS		PLACERS		
DMC-08 8 mm Cartiva CMC Counterbore Drill	sj	PMC-08 8 mm CMC Placer		
GUIDE PINS		T-HANDLE		
PNN-02 2 mm Guide Pin, Non-Threaded (6 per pack)		TMC-08 8 mm CMC T-Handle		
INTRODUCERS		STERILIZATION TRAY		
IMC-08 8 mm CMC Introducer	[]	TRA-00 Sterilization Tray		

BRIEF SUMMARY OF IMPORTANT PRODUCT INFORMATION

INDICATIONS FOR USE

Cartiva SCI for CMC is indicated for use in treatment of diseased or damaged articular surface of the first carpometacarpal joint.

CONTRAINDICATIONS, WARNINGS AND PRECAUTIONS

Contraindications:

Cartiva SCI for CMC is not designed, sold, or intended for use other than as indicated

Use of the device is contraindicated for patients with the following:

- Any significant bone loss, avascular necrosis, or subchondral bone cyst > 8mm of the supporting bone structure;
- Inadequate cortical bone stock required to support placement of the implant;
- Inflammatory arthropathy and/or diagnosis of gout;
- Physical conditions that would tend to eliminate adequate implant support (e.g. insufficient quality or quantity of bone resulting from cancer, congenital dislocation, or osteoporosis), systemic and metabolic disorders leading to progressive deterioration of bone (e.g., cortisone therapies, immunosuppressive therapies, neuromuscular compromise, vascular deficiency in the affected limb, absence of musculoligamentous supporting structures, and joint neuropathy), tumors and/or cysts of the supporting bone structures, arthritis of the scaphotrapeziotrapezoidal (STT) joint, rheumatoid arthritis, or joints previously treated with trapeziectomy;
- Known or suspected allergic reaction to polyvinyl alcohol;
- Active infection of the surgery site;
- Patient is on chronic anticoagulation due to a bleeding disorder or has taken anticoagulants within 5 days prior to surgery.

Warnings and Precautions:

It is the responsibility of each surgeon utilizing the Cartiva SCI for CMC device to consider the clinical and medical status of each patient and to be knowledgeable about all aspects of implant procedures and the potential complications that may occur. The benefits derived from implant surgery may not meet the patient's expectations or may deteriorate with time, necessitating revision surgery to replace the implant or to carry out alternative procedures. Revision surgeries with implants are not uncommon. Surgeons must balance many considerations to achieve the best result in individual patients.

Clinical results depend on physician and technique, preoperative and postoperative care, the implant, patient pathology, and daily activity. It is suggested that surgeons use

CITATIONS:

- 1. Data on file at Cartiva; n = 49 @ 12 months, GRIP Study.
- 2. Salem H, Davis TRC. Six year outcome excision of the trapezium for trapeziometacarpal joint osteoarthritis: is it improved by ligament reconstruction and temporary Kirschner wire insertion? J Hand Surg Eur. 2011 May;37E(3):211-219.
- Oka M, Ushio K, Kumar P, Ikeuchi K, Hyon SH, Nakamura T, Fujita H. Development of artificial articular cartilage. Proc Inst Mech Eng H. 2000;214(1):59-68.
- Dworkin RH, et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: INWPACT recommendations. J Pain. 2008 Feb;9(2):105-21. Epub 2007 Dec 11
- 5. Franchignoni, Franco, et al. "Minimal clinically important difference of the disabilities of the arm, shoulder and hand outcome measure (DASH) and its shorter (QuickDASH)." journal of orthopaedic & sports physical therapy 44.1 (2014): 30-39.

appropriate informed consent and discuss the potential for complications and the use of alternative techniques with each patient scheduled for surgery.

The Cartiva implant is a single-use only device. Each device should be used in one patient, during one procedure, and in only one implant site. Re-use of a previouslyimplanted device is strictly prohibited. Material properties required for implant duration and longevity cannot be assured by the manufacturer if the device is re-used, and the potential cross-contamination between implant sites and/or patients poses a serious health risk

Cartiva SCI for CMC has been sterilized. The implant is not compatible with gas or steam (autoclave) sterilization. DO NOT RESTERILIZE THE IMPLANT.

The implant is not compatible with storage or shipment temperatures in excess of 49°C (120°F). If the temperature-sensitive indicator on the container has turned dark gray to black, DO NOT USE THE IMPLANT.

Physical activity should be resumed according to the rehabilitation plan recommended by the physician. Vigorous activity may compromise the durability of clinical benefit from Cartiva SCI for CMC.

The long-term safety and effectiveness of cartilage replacement are unknown. Safety and effectiveness of Cartiva SCI for CMC in the following populations have not

- Pediatric population;
- Preanant women:
- Patients with either systemic or local infections;
- Patients with a diagnosis of concomitant injury that the physician believes may interfere with healing;
- Patients with clinically significant (as defined by the surgeon) renal, hepatic, cardiac, endocrine, hematologic, autoimmune or any systemic disease which may make interpretation of the results difficult;
- Patients who have undergone systemic administration within 30 days prior to implantation of any type of corticosteroid in the thumb, antineoplastic, immunostimulating or immunosuppressive agents;
- Patients with evidence of osteonecrosis of the involved joint, or history of peripheral neuropathy, active or on-going neoplastic disease, or immunosuppres

To avoid dehydration, maintain the Cartiva SCI for CMC in sterile saline until ready to implant

- 6. Bainbridge L.C., et al. "A prospective, multicenter clinical trial to assess safety and efficacy of a synthetic cartilage implant for treatment of Eaton-Littler stage II/III first CMC joint osteoarthritis: Cartiva GRIP Trial." BSSH Abstract. 2017 July 14; Abstract Ref 31911.
- 7. Data on file at Cartiva, Inc
- 8. Baker MI, Walsh SP, Zvi Sc, Boyan BD. J Biomed Mater Res B Appl Biomater. 2012 lul:100(5):1451-7.
- 9. Jacobs CA, Christensen CP, Greenwald AS, et al. J Bone Joint Surg Am. 2007;89(12):2779-2786.
- 10. Korhonen RK, Laasanen MS, Toyras J, et al. J Biomech. 2002 Jul;35(7):903-909. 11. Jurvelin JS, Buschmann MD, Hunziker EB, J Biomechanics. 1997;30(3):235-241.

Cartiva, Inc. 6120 Windward Parkway, Suite 220 Alpharetta, GA 30005 (877) 336-4616 cartiva.net info@cartiva.net

Cartiva's Synthetic Cartilage Implant is not approved for use in the 1st CMC joint in the United States Currently only available for use in Europe and Canada. © 2018 Cartiva, Inc. All rights reserved. Patent: http://cartiva.net/Home/Patents